Exercícios Objetivos

1. (2009/1) Numa pesquisa feita com 200 homens, observou-se que 80 eram casados, 20 separados, 10 eram viúvos e 90 eram solteiros. Escolhido um homem ao acaso, a probabilidade de ele não ser solteiro é

(a) 0,65. (d) 0,5.
(b) 0,5. (e) 0,35.
(c) 0,55.

2. (2009/1) Uma rede de supermercados fornece a seus clientes um cartão de crédito cuja identificação é formada por 3 letras distintas (dentro de 26), seguidas de 4 algarismos distintos. Uma determinada cidade receberá os cartões que têm L como terceira letra, o último algarismo é zero e o penúltimo é 1. A quantidade total de cartões distintos oferecidos por tal rede de supermerca- dos para essa cidade é

(a) 33 600. (d) 58 500.
(b) 37 800. (e) 67 600.
(c) 43 200.

3. (2009/2) Ao se lançar uma moeda de raio r (variável) sobre o chão coberto por ladrilhos quadrados de lado l (fixo), com l > 2r, qual deverá ser o diâmetro d (aproximado) da moeda que daria 60% de chances de vitória ao seu lançador, se o piso do chão fosse coberto por ladrilhos quadrados de 30 cm de lado? Dado: \(\sqrt{6} \approx 0,7746 \)

(a) 6,76 cm. (d) 6,56 cm.
(b) 6,46 cm. (e) 6,66 cm.
(c) 6,86 cm.

4. (2010/1) A figura mostra a planta de um bairro de uma cidade. Uma pessoa quer caminhar do ponto A ao ponto B por um dos percursos mais curtos. Assim, ela caminhará sempre nos senti- dos “de baixo para cima” ou “da esquerda para a direita”. O número de percursos diferentes que essa pessoa poderá fazer de A até B é:

5. (2010/2) Paulo quer comprar um sorvete com 4 bolas em uma sorveteria que possui três sabores de sorvete: chocolate, morango e uva. De quantos modos diferentes ele pode fazer a compra?

(a) 4. (d) 12.
(b) 6.
(c) 9. (e) 15.

6. (2011/2) Em um jogo lotérico, com 40 dezenas distintas e possíveis de serem escolhidas para aposta, são sorteadas 4 dezenas e o ganhador do prêmio maior deve acertar todas elas. Se a aposta mínima, em 4 dezenas, custa R$ 2,00, uma aposta em 6 dezenas deve custar:

(a) R$ 5,00. (d) R$ 70,00.
(b) R$ 30,00. (e) R$ 140,00.
(c) R$ 35,00.

7. (2011/2) Todo dado cúbico padrão possui as seguintes propriedades:
- Sobre suas faces estão registrados os números de 1 a 6, na forma de pontos.
- A soma dos números registrados, em qualquer duas de suas faces opostas, é sempre igual a 7.

Professor: Leonardo Carvalho
UNESP
contato: spexetas@gmail.com
Se quatro dados cúbicos padrões forem colocados verticalmente, um sobre o outro, em cima de uma superfície plana horizontal, de forma que qualquer observador tenha conhecimento apenas do número registrado na face horizontal superior do quarto dado, podemos afirmar que, se nessa face estiver registrado o número 5, então a soma dos números registrados nas faces horizontais não visíveis ao observador será de:

(a) 23.
(b) 24.
(c) 25.
(d) 26.
(e) 27.

8. (2012/1) O mercado automobilístico brasileiro possui várias marcas de automóveis disponíveis aos consumidores. Para cinco dessas marcas (A, B, C, D e E), a matriz fornece a probabilidade de um proprietário de um carro de marca da linha i trocar para o carro de marca da coluna j, quando da compra de um carro novo. Os termos da diagonal principal dessa matriz fornecem as probabilidades de um proprietário permanecer com a mesma marca de carro na compra de um novo.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.6</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>B</td>
<td>0.3</td>
<td>0.5</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>C</td>
<td>0.2</td>
<td>0.2</td>
<td>0.4</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>D</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

A probabilidade de um proprietário de um carro da marca B comprar um novo carro da marca C, após duas compras, é:

(a) 0.25.
(b) 0.24.
(c) 0.20.
(d) 0.09.
(e) 0.00.

9. (2012/2) Segundo nutricionistas, uma refeição equilibrada, para uma pessoa adulta e saudável, não deve conter mais que 800 kcal. A tabela traz algumas opções de pedido, variedades dentro destas opções e o valor energético de cada uma delas.

<table>
<thead>
<tr>
<th>Opções de Pedido</th>
<th>Variedades</th>
<th>Valor Energético</th>
</tr>
</thead>
<tbody>
<tr>
<td>sanduíches</td>
<td>completo</td>
<td>491 kcal</td>
</tr>
<tr>
<td></td>
<td>de peixe</td>
<td>362 kcal</td>
</tr>
<tr>
<td></td>
<td>light</td>
<td>295 kcal</td>
</tr>
<tr>
<td>acompanhamentos</td>
<td>salada</td>
<td>8 kcal</td>
</tr>
<tr>
<td></td>
<td>refrigerante 300 mL</td>
<td>120 kcal</td>
</tr>
<tr>
<td></td>
<td>refrigerante diet 300 mL</td>
<td>0 kcal</td>
</tr>
<tr>
<td></td>
<td>suco de laranja 300 mL</td>
<td>116 kcal</td>
</tr>
<tr>
<td>sobremesas</td>
<td>torta de maçã</td>
<td>198 kcal</td>
</tr>
<tr>
<td></td>
<td>porção de frutas</td>
<td>25 kcal</td>
</tr>
</tbody>
</table>

Escolhendo-se um item de cada opção de pedido, a refeição de maior valor energético, que não exceda o limite de 800 kcal, será a composta de:

(a) sanduíche completo, porção de fritas, refrigerante diet 300 mL e porção de frutas.
(b) sanduíche light, porção de fritas, refrigerante 300 mL e porção de frutas.
(c) sanduíche light, porção de fritas, suco de laranja 300 mL e porção de frutas.
(d) sanduíche de peixe, porção de fritas, suco de laranja 300 mL e porção de frutas.
(e) sanduíche de peixe, porção de fritas, refrigerante diet 300 mL e torta de maçã.

10. (2014/1) Em um condomínio residencial, há 120 casas e 230 terrenos sem edificações. Em um determinado mês, entre as casas, 20% dos proprietários associados a cada casa estão com as taxas de condomínio atrasadas, enquanto que, entre os proprietários associados a cada terreno, esse percentual é de 10%. De posse de todos os boletos individuais de cobrança das taxas em atraso do mês, o administrador do empreendimento escolhe um boleto ao acaso. A probabilidade de que o boleto escolhido seja de um proprietário de terreno sem edificação é de:

(a) \(\frac{24}{350} \)
(b) \(\frac{24}{47} \)
(c) \(\frac{24}{47} \)
(d) \(\frac{350}{350} \)
(e) \(\frac{24}{47} \)
11. (2014/2) Um professor, ao elaborar uma prova composta de 10 questões de múltipla escolha, com 5 alternativas cada e apenas uma correta, deseja que haja um equilíbrio no número de alternativas corretas, a serem assinaladas com X na folha de respostas. Isto é, ele deseja que duas questões sejam assinaladas com a alternativa A, duas com a B, e assim por diante, como mostra o modelo.

A tabela mostra os resultados percentuais registrados na pesquisa, de acordo com as diferentes categorias tabuladas.

<table>
<thead>
<tr>
<th>categorias</th>
<th>percentuais</th>
</tr>
</thead>
<tbody>
<tr>
<td>ótimo</td>
<td>25</td>
</tr>
<tr>
<td>regular</td>
<td>43</td>
</tr>
<tr>
<td>pessimo</td>
<td>17</td>
</tr>
<tr>
<td>nao opinaram</td>
<td>15</td>
</tr>
</tbody>
</table>

Se cada consumidor votou uma única vez, a probabilidade de o consumidor sorteado estar entre os que opinaram e ter votado na categoria pessimo é, aproximadamente,

(a) 20%. (d) 29%.
(b) 30%. (e) 23%.
(c) 26%.

12. (2015/1) Uma loja de departamentos fez uma pesquisa de opinião com 1 000 consumidores, para monitorar a qualidade de atendimento de seus serviços. Um dos consumidores que opinaram foi sorteado para receber um prêmio pela participação na pesquisa.

Nessas condições, a quantidade de folha de respostas diferentes, com a letra X disposta nas alternativas corretas, será

(a) 302 400. (d) 181 440.
(b) 113 400.
(c) 226 800. (e) 604 800.

13. (2016/1) Um dado convencional e uma moeda, ambos não viciados, serão lançados simultaneamente. Uma das faces da moeda está marcada com o número 3, e a outra com o número 6. A probabilidade de que a média aritmética entre o número obtido da face do dado e da face da moeda esteja entre 2 e 4 é igual a

(a) \frac{1}{3}
(b) \frac{2}{3}
(c) \frac{1}{2}
(d) \frac{3}{4}
(e) \frac{1}{4}
Gabarito

Professor: Leonardo Carvalho
UNESP
contato: spexatas@gmail.com
1. (2009/1) Durante o ano letivo, um professor de matemática aplicou cinco provas para seus alunos. A tabela apresenta as notas obtidas por um determinado aluno em quatro das cinco provas realizadas e os pesos estabelecidos pelo professor para cada prova.

<table>
<thead>
<tr>
<th>Prova</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nota</td>
<td>6.5</td>
<td>7.3</td>
<td>7.5</td>
<td>?</td>
<td>6.2</td>
</tr>
<tr>
<td>Peso</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Se o aluno foi aprovado com média final ponderada igual a 7.3, calculada entre as cinco provas, a nota obtida por esse aluno na prova IV foi:

(a) 9.0.
(b) 8.5.
(c) 8.3.
(d) 8.0.
(e) 7.5.
(1) B
Exercícios Objetivos

1. (2009/1) O altímetro dos aviões é um instrumento que mede a pressão atmosférica e transforma esse resultado em altitude. Suponha que a altitude h acima do nível do mar, em quilômetros, detectada pelo altímetro de um avião seja dada, em função da pressão atmosférica p, em atm, por

$$h(p) = 20 \cdot \log_{10} \frac{1}{p}$$

Num determinado instante, a pressão atmosférica medida pelo altímetro era 0,4 atm. Considerando a aproximação $\log_{10} 2 = 0,3$, a altitude h do avião nesse instante, em quilômetros, era de

(a) 5. \hspace{1cm} (d) 11.
(b) 8. \hspace{1cm} (e) 12.
(c) 9.

2. (2011/1) Ambientalistas, após estudos sobre o impacto que possa vir a ser causado à população de certa espécie de pássaros pela construção de um grande conjunto de edifícios residenciais próximo ao sopé da Serra do Japi, em Jundiaí, SP, concluíram que a quantidade de tais pássaros, naquela região, em função do tempo, pode ser expressa, aproximadamente, pela função

$$P(t) = \frac{P_0}{4 - 3(2^{-t})}$$

onde t representa o tempo, em anos, e P_0 a população de pássaros na data de início da construção do conjunto. Baseado nessas informações, pode-se afirmar que:

(a) após 1 ano do início da construção do conjunto, $P(t)$ estará reduzida a 30% de P_0.
(b) após 1 ano do início da construção do conjunto, $P(t)$ será reduzida de 30% de P_0.
(c) após 2 anos do início da construção do conjunto, $P(t)$ estará reduzida a 40% de P_0.
(d) após 2 anos do início da construção do conjunto, $P(t)$ será reduzida de 40% de P_0.
(e) $P(t)$ não será inferior a 25% de P_0.

3. (2012/1) Em 2010, o Instituto Brasileiro de Geografia e Estatística (IBGE) realizou o último censo populacional brasileiro, que mostrou que o país possuía cerca de 190 milhões de habitantes.

Supondo que a taxa de crescimento populacional do nosso país não se altere para o próximo século, e que a população se estabilizará em torno de 280 milhões de habitantes, um modelo matemático capaz de aproximar o número de habitantes (P), em milhões, a cada ano (t), a partir de 1970, é dado por:

$$P(t) = [280 - 190e^{-0,019(t-1970)}]$$

Baseado nesse modelo, e tomando a aproximação para o logaritmo natural

$$\ln \frac{14}{95} \approx -1,9$$

a população brasileira será 90% da suposta população de estabilização aproximadamente no ano de:

(a) 2065. \hspace{1cm} (d) 2080.
(b) 2070. \hspace{1cm} (c) 2075. \hspace{1cm} (e) 2085.

4. (2013/1) Todo número inteiro positivo n pode ser escrito em sua notação científica como sendo $n = k \cdot 10^x$, em que $k \in \mathbb{R}^+$, $1 \leq k < 10$ e $x \in \mathbb{Z}$. Além disso, o número de algarismos de n é dado por $(x+1)$. Sabendo que $\log 2 \equiv 0,30$, o número de algarismos de 2^{17} é:

(a) 16. \hspace{1cm} (d) 15.
(b) 19. \hspace{1cm} (c) 18. \hspace{1cm} (e) 17.

5. (2013/2) A revista Pesquisa Fapesp, na edição de novembro de 2012, publicou o artigo intitulado Conhecimento Livre, que trata dos repositórios de artigos científicos disponibilizados gratuitamente aos interessados, por meio eletrônico. Nesse artigo, há um gráfico que mostra o crescimento do número dos repositórios institucionais no mundo, entre os anos de 1991 e 2011.
Observando o gráfico, pode-se afirmar que, no período analisado, o crescimento do número de repositórios institucionais no mundo foi, aproximadamente,

(a) exponencial.
(b) linear.
(c) logarítmico.
(d) senoidal.
(e) nulo.

6. (2014/1) O que era impressão virou estatística: a cidade de São Paulo está cada dia mais lenta. Quem mostra é a própria CET (Companhia de Engenharia de Tráfego), que concluiu um estudo anual sobre o trânsito paulistano. Os dados de 2012 apontam que a velocidade média nos principais corredores viários da cidade foi de 22,1 km/h no pico da manhã e de 18,5 km/h no pico da tarde. Uma piora de 5% e 10% em relação a 2008, respectivamente.

Caso a velocidade média do trânsito nos principais corredores viários paulistanos continue decaindo nos mesmos percentuais pelos próximos anos e sabendo que \(\ln 2 \approx 0,69 \), \(\ln 3 \approx 1,10 \), \(\ln 5 \approx 1,61 \) e \(\ln 19 \approx 2,94 \), os anos aproximados em que as velocidades médias nos picos da manhã e da tarde chegarão à metade daquelas observadas em 2012 serão, respectivamente,

(a) 2028 e 2019.
(b) 2068 e 2040.
(c) 2022 e 2017.
(d) 2025 e 2018.
(e) 2057 e 2029.

7. (2015/1) No artigo “Desmatamento na Amazônia Brasileira: com que intensidade vem ocorrendo?”, o pesquisador Philip M. Fernside, do INPA, sugere como modelo matemático para o cálculo da área de desmatamento a função \(D(t) = D(0).e^{kt} \), em que \(D(t) \) representa a área de desmatamento no instante \(t \), sendo \(t \) medido em anos desde o instante inicial, \(D(0) \) a área de desmatamento no instante inicial \(t = 0 \), e \(k \) a taxa média anual de desmatamento da região. Admitindo que tal modelo seja representativo da realidade, que a taxa média anual de desmatamento \((k) \) da Amazônia seja 0,6% e usando a aproximação \(\ln 2 \approx 0,69 \), o número de anos necessários para que a área de desmatamento da Amazônia dobre seu valor, a partir de um instante inicial prefixado, é aproximadamente

(a) 51.
(b) 115.
(c) 15.
(d) 151.
(e) 11.

8. (2016/1) Um torneio de futebol será disputado por 16 equipes que, ao final, serão classificadas do 1º ao 16º lugar. Para efeitos da classificação final, as regras do torneio impedem qualquer tipo de empate. Considerando para os cálculos log 15! = 12 e log 2 = 0,3, a ordem de grandeza do total de classificações possíveis das equipes nesse torneio é de

(a) bilhões.
(b) trilhões.
(c) quintilhões.
(d) milhões.
(e) trilhões.
Gabarito

(1) B (4) C (7) B
(2) E (5) A
(3) B (6) B (8) E
Exercícios Objetivos

1. (2009/1) Na Volta Ciclistica do Estado de São Paulo, um determinado atleta percorre um declive de rodovia de 400 metros e a função

\[d(t) = 0,4t^2 + 6t \]

fornece, aproximadamente, a distância em metros percorrida pelo ciclista, em função do tempo \(t \), em segundos. Pode-se afirmar que a velocidade média do ciclista (isto é, a razão entre o espaço percorrido e o tempo) nesse trecho é

(a) superior a 15 m/s.
(b) igual a 15 m/s.
(c) inferior a 15 m/s.
(d) igual a 17 m/s.
(e) igual a 14 m/s.

2. (2009/2) A proprietária de uma banca de artesanatos registrou, ao longo de dois meses de trabalho, a quantidade diária de guardanapos vendidos \((g)\) e o preço unitário de venda praticado \((p)\). Analisando os dados registrados, ela observou que existia uma relação quantitativa entre essas duas variáveis, a qual era dada pela lei:

\[p = \frac{-25}{64} \cdot g + \frac{25}{2} \]

O preço unitário pelo qual deve ser vendido o guardanapo bordado, para que a receita diária da proprietária seja máxima, é de

(a) R$ 12,50.
(b) R$ 9,75.
(c) R$ 6,25.
(d) R$ 4,25.
(e) R$ 2,00.

O enunciado se refere às questões de números 3 e 4.

Uma fábrica utiliza dois tipos de processos, \(P_1 \) e \(P_2 \), para produzir dois tipos de chocolates, \(C_1 \) e \(C_2 \). Para produzir 1 000 unidades de \(C_1 \) são exigidas 3 horas de trabalho no processo \(P_1 \) e 3 horas em \(P_2 \). Para produzir 1 000 unidades de \(C_2 \) são necessárias 1 hora de trabalho no processo \(P_1 \) e 6 horas em \(P_2 \). Representando por \(x \) a quantidade diária de lotes de 1 000 unidades de chocolates produzidas pelo processo \(P_1 \) e por \(y \) a quantidade diária de lotes de 1000 unidades de chocolates produzidas pelo processo \(P_2 \), sabe-se que o número de horas trabalhadas em um dia no processo \(P_1 \) é \(3x + y \), e que o número de horas trabalhadas em um dia no processo \(P_2 \) é \(3x + 6y \).

Professor: Leonardo Carvalho
UNESP
contato: spexatas@gmail.com
4. (2010/1) Dado que o lucro na venda de uma unidade do chocolate produzido pelo processo P_1 é de R$ 0,50, enquanto que o lucro na venda de uma unidade do chocolate produzido pelo processo P_2 é de R$ 0,80, e se forem vendidas todas as unidades produzidas em um dia nos dois processos, no número máximo possíveis de horas, o lucro obtido, em reais, será:

(a) 3.400,00. (d) 6.400,00.
(b) 3.900,00. (e) 11.200,00.
(c) 4.700,00.

5. (2010/2) Observe o gráfico da função $f(x)$ e analise as afirmações a seu respeito.

(I) Se $x_1, x_2 \in \text{Dom}(f)$ e $x_2 > x_1$, então $f(x_2) > f(x_1)$.

(II) Se $x > 1$, então $f(x) < 0$.

(III) O ponto (2, -2) pertence ao gráfico de $f(x)$.

(IV) A lei de formação de $f(x)$ representada no gráfico é dada por $f(x) = -\frac{1}{2}(x - 1)$.

A alternativa que corresponde a todas as afirmações verdadeiras é:

(a) I e III. (d) II, III e IV.
(b) I, II e III. (e) II e IV.
(c) I e IV.

6. (2010/2) Através dos gráficos das funções $f(x)$ e $g(x)$, os valores de $f(g(0))$ e $g(f(1))$ são, respectivamente:

(a) -5 e 0. (d) 2 e -5.
(b) -5 e 2. (e) 2 e 0.
(c) 0 e 0.

7. (2011/2) Uma pessoa necessita de 5 mg de vitamina E por semana, a serem obtidos com a ingestão de dois complementos alimentares α e β. Cada pacote desses complementos fornece, respectivamente, 1 mg e 0,25 mg de vitamina E. Essa pessoa dispõe de eticamente R$ 47,00 semanais para gastar com os complementos, sendo que cada pacote de α custa R$ 5,00 e de β R$ 4,00.

O número mínimo de pacotes do complemento alimentar α que essa pessoa deve ingerir semanalmente, para garantir os 5 mg de vitamina E ao custo fixado para o mesmo período, é de:

(a) 3. (d) $\frac{3}{4}$.
(b) $\frac{5}{16}$. (e) 8.
(c) 5,5.

8. (2011/2) A tabela apresenta, na coluna da esquerda, a descrição de alguns tipos de funções e, na coluna da direita, representações de alguns gráficos de funções, cujas variáveis independentes, definidas no domínio dos números reais, estão representadas nos eixos das abscissas.

Professor: Leonardo Carvalho

UNESP

contato: spexatas@gmail.com
O conjunto de pares ordenados que relaciona cada função à sua respectiva representação gráfica é:

(a) (I, a), (II, d), (III, e), (IV, b), (V, c).
(b) (I, c), (II, d), (III, a), (IV, b), (V, e).
(c) (I, d), (II, c), (III, a), (IV, b), (V, c).
(d) (I, e), (II, d), (III, a), (IV, b), (V, c).
(e) (I, e), (II, d), (III, b), (IV, a), (V, c).

9. (2012/1) No dia 11 de março de 2011, o Japão foi sacudido por terremoto com intensidade de 8,9 na Escala Richter, com o epicentro no Oceano Pacífico, a 360 km de Tóquio, seguido de tsunami. A cidade de Sendai, a 320 km a nordeste de Tóquio, foi atingida pela primeira onda do tsunami após 13 minutos.

(O Estado de S.Paulo, 13.03.2011. Adaptado.)

10. (2012/2) No conjunto R dos números reais, o conjunto solução S da inequação modular $|x| - |x - 5| \geq 6$ é:

(a) $S = \{x \in \mathbb{R} \mid -1 \leq x \leq 6\}$
(b) $S = \{x \in \mathbb{R} \mid x \geq -10 ou x \leq 3\}$
(c) $S = \{x \in \mathbb{R} \mid -10 \leq x \leq 3 ou x \geq 6\}$
(d) $S = \{x \in \mathbb{R} \mid x \leq 2 ou x \geq 3\}$
(e) $S = \{\mathbb{R}\}$

11. (2014/2) Os gráficos de duas funções $f(x)$ e $g(x)$, definidas de \mathbb{R} em \mathbb{R}, estão representados no mesmo plano cartesiano.
No intervalo [-4, 5], o conjunto solução da inequação \(f(x) \cdot g(x) < 0 \) é:

(a) \(\{x \in \mathbb{R} / -1 < x < 3\} \)
(b) \(\{x \in \mathbb{R} / -1 < x < 0 \text{ou} 3 < x \leq 5\} \)
(c) \(\{x \in \mathbb{R} / -4 \leq x < -1 \text{ou} 0 < x < 3\} \)
(d) \(\{x \in \mathbb{R} / -4 < x < 0\} \)
(e) \(\{x \in \mathbb{R} / -4 \leq x < -1 \text{ou} 3 < x < 5\} \)

12. (2016/1) Uma imobiliária exige dos novos locatários de imóveis o pagamento, ao final do primeiro mês no imóvel, de uma taxa, junto com a primeira mensalidade de aluguel. Rafael alugou um imóvel nessa imobiliária e pagou R$ 900,00 ao final do primeiro mês. No período de um ano de ocupação do imóvel, ele contabilizou gastos totais de R$ 6.950,00 com a locação do imóvel. Na situação descrita, a taxa paga foi de:

(a) R$ 450,00.
(b) R$ 250,00.
(c) R$ 300,00.
(d) R$ 350,00.
(e) R$ 550,00.
|-----|

Professor: Leonardo Carvalho
UNESP
contato: spexatas@gmail.com
Exercícios Objetivos

1. (2009/1) Dentre as regiões sombreadas, aquela que representa no plano cartesiano o conjunto $U = \{(x, y) \in \mathbb{R}^2 | y \geq 2x + 10x^2 + y^2 \leq 4 \}$.

2. (2009/2) Sejam a circunferência $\lambda : x^2 + y^2 - 2y + k = 0$ e a reta $r : 3x + 4y - 19 = 0$. Para que r seja tangente a λ, k deve valer

 (a) -10. (d) 8.
 (b) -8. (e) 10.
 (c) 0.

3. (2010/1) A figura mostra a representação de algumas das ruas de nossas cidades. Essas ruas possuem calçadas de 1,5 m de largura, separadas por uma pista de 7 m de largura. Vamos admitir que:

 (I) os postes de iluminação projetam sobre a rua uma área iluminada na forma de uma elipse de excentricidade $0,943$;
 (II) o centro dessa elipse encontra-se verticalmente abaixo da lâmpada, no meio da rua;
 (III) o eixo menor da elipse, perpendicular à calçada, tem exatamente a largura da rua (calçadas e pista).

Se desejarmos que as elipses de luz se tangenciem nas extremidades dos eixos maiores, a distância, em metros, entre dois postes consecutivos deverá ser de aproximadamente:

Dado: $0,943^2 = 0,889$ e $\sqrt{0,889} \approx 0,333$
4. (2010/2) Uma aeronave faz sua aproximação final do destino, quando seu comandante é informado pelo controlador de voo que, devido ao intenso tráfego aéreo, haverá um tempo de espera de 15 minutos para que o pouso seja autorizado e que ele deve permanecer em rota circular, em torno da torre de controle do aeroporto, a 1 500 metros de altitude, até que a autorização para o pouso seja dada. O comandante, cônscio do tempo de espera a ser despendido e de que, nessas condições, a aeronave que pilota voa a uma velocidade constante de V_c (km/h), decide realizar uma única volta em torno da torre de controle durante o tempo de espera para aterrissar.

Sabendo que o aeroporto encontra-se numa planície e tomando sua torre de controle como sendo o ponto de origem de um sistema de coordenadas cartesianas, determine a equação da projeção ortogonal, sobre o solo, da circunferência que a aeronave descreverá na altitude especificada.

(a) $x^2 + y^2 = (15V_c/2\pi)^2$
(b) $x^2 + y^2 = (2V_c/\pi)^2$
(c) $x^2 + y^2 = (V_c/2\pi)^2$
(d) $x^2 + y^2 = (V_c/8\pi)^2$
(e) $x^2 + y^2 = (V_c/32\pi)^2$
Gabarito

(1) A (2) B (3) B (4) D
Exercícios Objetivos

1. (2009/2) A base metálica de um dos tanques de armazenamento de latex de uma fábrica de preservativos cedeu, provocando um acidente ambiental. Nesse acidente, vazaram 12 mil litros de latex. Considerando a aproximação \(\pi = 3 \), e que 1 000 litros correspondem a 1\(\text{m}^3 \), se utilizássemos vasilhames na forma de um cilindro circular reto com 0,4 m de raio e 1 m de altura, a quantidade de latex derramado daria para encher exatamente quantos vasilhames?

(a) 12. \hspace{1cm} (d) 25.
(b) 20. \hspace{1cm} (c) 22.
(c) 30.

2. (2009/2) Marcos, sentindo muito calor, senta-se em um banco e pede um chopp, o qual lhe é servido em uma “tulipa”, que é um copo na forma de um cone invertido. O garçom chega com a bebida ao mesmo tempo em que “Porê”, seu grande amigo, passa em frente ao banco. Marcos grita: - “Porê, sente-se aqui e tome a metade do chopp desta tulipa comigo!” Porê senta-se, faz cara de quem não sabe o que fazer e diz: “Marcos, mas até que altura do copo eu devo beber o chopp para que sobre exatamente a metade para você?” Marcos pega um guardanapo de papel, uma caneta e mede a altura da tulipa, que era de 20 cm. Após alguns minutos e algumas contas, Marcos diz ao amigo: - “Você deve beber os primeiros ...”

Use: \(4^{1/3} \approx 1,6 \)

(a) 4 cm de chopp na tulipa h.
(b) 5 cm de chopp na tulipa h.
(c) 10 cm de chopp na tulipa h.
(d) 15 cm de chopp na tulipa h.
(e) 16 cm de chopp na tulipa h.

3. (2011/1) Uma pessoa se encontra no ponto A de uma planície, as margens de um rio e vê, do outro lado do rio, o topo do mastro de uma bandeira, ponto B. Com o objetivo de determinar a altura h do mastro, ela anda, em linha reta, 50 m para a direita do ponto em que se encontrava e marca o ponto C. Sendo D o pé do mastro, avalia que os ângulos \(\triangle BAC \) e \(\triangle BCD \) valem 30\(^\circ\), e o ângulo \(\triangle ACB \) vale 105\(^\circ\), como mostra a figura.

A altura h do mastro da bandeira, em metros, é

(a) 12,5. \hspace{1cm} (d) 25,0\(\sqrt{2} \).
(b) 12,5\(\sqrt{2} \).
(c) 25,0.
(e) 35,0.

4. (2011/1) Há 4 500 anos, o Imperador Queops do Egito mandou construir uma pirâmide regular que seria usada como seu túmulo. As características e dimensões aproximadas dessa pirâmide hoje, são:

1\(^a\) Sua base e um quadrado com 220 metros de lado;
2\(^a\) Sua altura e de 140 metros.

Suponha que, para construir parte da pirâmide equivalente a 1,88 \times 10^5 m\(^3\), o número médio de operários utilizados como mão de obra gastava em média 60 dias. Dados que 2, \(2^2 \times 1, 4 \approx 6,78 \) e 2, \(2^2 \div 1,88 \approx 1,2 \) e mantidas estas médias, o tempo necessário para a construção de toda pirâmide, medido em anos de 360 dias, foi de, aproximadamente,

(a) 20. \hspace{1cm} (d) 50.
(b) 30.
(c) 40.
(e) 60.

5. (2012/1) A figura mostra um paralelepípedo reto-retângulo ABCDEFGH, com base quadrada ABCD de aresta a e altura 2a, em centímetros.
A distância, em centímetros, do vértice A à diagonal BH vale:

(a) \(\frac{\sqrt{5}}{6}a \)
(b) \(\frac{\sqrt{6}}{6}a \)
(c) \(\frac{\sqrt{5}}{5}a \)

(d) \(\frac{\sqrt{6}}{5}a \)
(e) \(\frac{\sqrt{20}}{6}a \)

6. (2012/2) Diferentes tipos de nanomateriais são descobertos a cada dia, viabilizando produtos mais eficientes, leves, adequados e, principalmente, de baixo custo.

São considerados nanomateriais aqueles cujas dimensões variam entre 1 e 100 nanômetros (nm), sendo que 1 nm equivale a \(10^9 \) m, ou seja, um bilionésimo de metro.

Uma das características dos nanomateriais refere-se à relação entre seu volume e sua área superficial total.

Por exemplo, em uma esfera maciça de 1 cm de raio, a área superficial e o volume valem \(4\pi r^2 \) e \(\frac{4}{3}\pi r^3 \), respectivamente. O conjunto de nanoesferas de 1 nm de raio, que possui o mesmo volume da esfera dada, tem a soma de suas áreas superficiais

(a) \(10 \) vezes maior que a da esfera.
(b) \(10^3 \) vezes maior que a da esfera.
(c) \(10^4 \) vezes maior que a da esfera.
(d) \(10^5 \) vezes maior que a da esfera.
(e) \(10^6 \) vezes maior que a da esfera.

7. (2012/2) No vazamento de petróleo da empresa americana Chevron do último dia 7 de novembro, na bacia de Campos/RJ, a mancha de óleo na superfície do mar assumiu grandes dimensões e teve seu pico de área entre os dias 12 e 14 daquele mês. O vazamento levou dias para ser contido, pois o petróleo continuava a escapar por fissuras, como mostrado na foto.

A figura mostra, de forma hipotética e aproximada, em azul escuro, as áreas da mancha de óleo na superfície do mar.

Dados \(1 dm^3 = 1L \) e \(\pi = 3 \) e sabendo que a altura média da lâmina de óleo sobre as águas era de 0,003 mm e que 1 barril de petróleo cru contém 160 litros de óleo, o número aproximado de barris que vazaram no incidente foi

(a) \(2 \text{ } 360 \).
(b) \(2 \text{ } 860 \).
(c) \(2 \text{ } 960 \).
(d) \(3 \text{ } 320 \).
(e) \(5 \text{ } 250 \).

8. (2013/1) Seis reservatórios cilíndricos, superpostos e iguais (A, B, C, D, E e F) estão apoiados sobre uma superfície horizontal plana e ligados por válvulas (V) nas posições indicadas na figura.
Sabendo que a densidade da madeira utilizada na confecção do porta-jóias era de 0,85g/cm³ e admitindo π = 3, a massa aproximada do porta-jóias, em gramas, é

(a) 636.
(b) 634.
(c) 630.
(d) 632.
(e) 638.

10. (2013/2) Uma empresa de cerâmica utiliza três tipos de caixas para embalar seus produtos, conforme mostram as figuras.

Essa empresa fornece seus produtos para grandes cidades, que, por sua vez, proíbem o tráfego de caminhões de grande porte em suas áreas centrais. Para garantir a entrega nessas regiões, o proprietário da empresa decidiu adquirir caminhões com caçambas menores. A tabela apresenta as dimensões de cinco tipos de caçambas encontradas no mercado pelo proprietário.

<table>
<thead>
<tr>
<th>tipo de caçamba</th>
<th>comprimento (m)</th>
<th>largura (m)</th>
<th>altura (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>3,5</td>
<td>2,5</td>
<td>1,2</td>
</tr>
<tr>
<td>II</td>
<td>3,5</td>
<td>2,0</td>
<td>1,0</td>
</tr>
<tr>
<td>III</td>
<td>3,0</td>
<td>2,2</td>
<td>1,0</td>
</tr>
<tr>
<td>IV</td>
<td>3,0</td>
<td>2,0</td>
<td>1,5</td>
</tr>
<tr>
<td>V</td>
<td>3,0</td>
<td>2,0</td>
<td>1,0</td>
</tr>
</tbody>
</table>

Sabe-se que:
- a empresa transporta somente um tipo de caixa por entrega.
- a empresa deverá adquirir somente um tipo de caçamba.
- a caçamba adquirida deverá transportar qualquer tipo de caixa.
- as caixas, ao serem acomodadas, deverão ter seus "comprimento, largura e altura" coincidindo com os mesmos sentidos dos "comprimento, largura e altura" da caçamba.
- para cada entrega, o volume da caçamba deverá estar totalmente ocupado pelo tipo de caixa transportado.

Atendendo a essas condições, o proprietário optou pela compra de caminhões com caçamba do tipo

(a) II. (d) I.
(b) IV.
(c) III. (e) V.

11. (2016/1) Um paralelepípedo reto-retângulo foi dividido em dois prismas por um plano que contém as diagonais de duas faces opostas, como indica a figura.

Comparando-se o total de tinta necessária para pintar as faces externas do paralelepípedo antes da divisão com o total necessário para pintar as faces externas dos dois prismas obtidos após a divisão, houve um aumento aproximado de

(a) 42%.
(b) 36%.
(c) 32%.
(d) 26%.
(e) 28%.
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>D</td>
<td>(4)</td>
<td>A</td>
<td>(7)</td>
</tr>
<tr>
<td>(2)</td>
<td>A</td>
<td>(5)</td>
<td>E</td>
<td>(8)</td>
</tr>
<tr>
<td>(3)</td>
<td>B</td>
<td>(6)</td>
<td>D</td>
<td>(9)</td>
</tr>
<tr>
<td>(10)</td>
<td>E</td>
<td></td>
<td></td>
<td>(11)</td>
</tr>
</tbody>
</table>
Exercícios Objetivos

1. (2009/1) Paulo e Marta estão brincando de jogar dardos. O alvo é um disco circular de centro O. Paulo joga um dardo, que atinge o alvo num ponto, que vamos denotar por P; em seguida, Marta joga outro dardo, que atinge um ponto denotado por M, conforme figura.

![Figura não em escala.](image)

Sabendo-se que a distância do ponto P ao centro O do alvo é $PO = 10\, \text{cm}$, que a distância de P a M é $PM = 14\, \text{cm}$ e que o ângulo POM mede 120°, a distância, em centímetros, do ponto M ao centro O é

(a) 12.
(b) 9.
(c) 8.
(d) 6.
(e) 5.

2. (2009/1) Uma foto de satélite de uma região da floresta amazônica (foto 1) mostrava uma área desmatada na forma de um círculo. Outra foto da mesma região, tirada após algum tempo (foto 2), mostrou que a área desmatada havia aumentado.

![áreas desmatadas](image)

Suponha que as fotos, tiradas ortogonalmente ao centro da região e a partir de uma mesma posição, sejam quadrados de lado l, que o centro do círculo e do quadrado coincidam e que o raio do círculo é $\frac{l}{4}$. Usando a aproximação $\pi = 3.3$, a porcentagem de aumento da área desmatada, da foto 1 para a foto 2, é aproximadamente

(a) 16.7.
(b) 33.3.
(c) 66.7.
(d) 75.3.
(e) 83.3.

3. (2009/2) Um retângulo está inscrito em um semicírculo de raio 1, tendo um de seus lados (base) sobre o diâmetro. Calculando a razão entre a altura e a base desse retângulo, de modo que sua área seja máxima, a resposta será

(a) $\sqrt{3}$
(b) 1.
(c) $\sqrt{2}$
(d) $\sqrt{3}$
(e) $\frac{1}{2}$

4. (2010/1) A figura representa uma chapa de alumínio de formato triangular de massa 1 250 gramas. Deseja-se cortá-la por uma reta r paralela ao lado BC e, que intercepta o lado AB em D e o lado AC em E, de modo que o trapézio $BCED$ tenha 700 gramas de massa. A espessura e a densidade do material da chapa são uniformes. Determine o valor percentual da razão de AD por AB.

Dado: $\sqrt{11} \approx 3,32$

![áreas de chapa](image)

(a) 88,6.
(b) 81,2.
(c) 74,8.
(d) 66,4.
(e) 44,0.

5. (2010/2) O papelão utilizado na fabricação de caixas reforçadas é composto de três folhas de papel, coladas uma nas outras, sendo que as duas folhas das faces são “lisas” e a folha que se intercala entre elas é “sanfonada”, conforme mostrado na figura.

![papelão sanfonado](image)

O fabricante desse papelão compra o papel em bobinas, de comprimento variável. Supondo que a folha “sanfonada” descreva uma curva composta por uma sequência de semicircunferências, com concavidades alternadas e
de raio externo \(R_{ext} \) de 1,5 mm, determine qual deve ser a quantidade de papel da bobina que gerará a folha "sanfonada", com precisão de centímetros, para que, no processo de fabricação do papelão, esta se esgote no mesmo instante das outras duas bobinas de 102 m de comprimento de papel, que produzirão as faces "lisas".

Dado: \(\pi = 3,14 \).

(a) 160 m e 07 cm.
(b) 160 m e 14 cm.
(c) 160 m e 21 cm.
(d) 160 m e 28 cm.
(e) 160 m e 35 cm.

6. (2010/2) Em um experimento sobre orientação e navegação de pombos, considerou-se o pombal como a origem O de um sistema de coordenadas cartesianas e os eixos orientados Sul-Norte (SN) e Oeste-Leste (WL). Algumas aves foram liberadas num ponto P que fica 52 km ao leste do eixo SN e a 30 km ao sul do eixo WL. O ângulo azimutal de P é o ângulo, em graus, medido no sentido horário a partir da semirreta ON até a semirreta OP. No experimento descrito, a distância do pombal até o ponto de liberação das aves, em km, e o ângulo azimutal, em graus, desse ponto são, respectivamente:

Dado: \(\sqrt{3604} \approx 60 \)

Além disso, dizemos que um grafo admite um "passeio de Euler" se existir um caminho do qual façam parte todas as arestas ou arcos desse grafo, sendo possível desenhá-lo sem tirar o lápis do papel e passando-o uma única vez em cada aresta ou arco. Na figura 1 é possível fazer um "passeio de Euler" partindo-se apenas dos vértices "A" ou "C". Por exemplo, um possível "passeio" pode ser representado pela sequência de vértices dada por: ABCDEFC.

Consideremos os grafos:

(a) 42,5 e 30.
(b) 42,5 e 120.
(c) 60 e 30.
(d) 60 e 120.
(e) 60 e 150.

7. (2011/2) Um grafo é uma figura constituída de um número finito de arestas ou arcos, cujas extremidades são chamadas vértices. Em um grafo, a "ordem de um vértice" é o número de extremidades de arestas ou arcos que se apoiam naquele vértice. A figura 1 é um grafo cujos vértices A e C possuem ordem 3 (o vértice A é o apoio de um arco cujas extremidades coincidem) e os demais vértices possuem ordem 2.

Os que admitem um "passeio de Euler" são apenas:

(a) I e III.
(b) I e IV.
(c) I, II e V.
(d) I, III e IV.
(e) I, IV e V.

8. (2013/2) Um aluno precisa localizar o centro de uma moeda circular e, para tanto, dispõe apenas de um lápis, de uma folha de papel, de uma...
régua não graduada, de um compasso e da moeda.

Nessas condições, o número mínimo de pontos distintos necessários de serem marcados na circunferência descrita pela moeda para localizar seu centro é

(a) 3. (d) 1.
(b) 2. (e) 5.
(c) 4.

9. (2013/2) Uma partícula em movimento descreve sua trajetória sobre semicircunferências traçadas a partir de um ponto P₀, localizado em uma reta horizontal r, com deslocamento sempre no sentido horário. A figura mostra a trajetória da partícula, até o ponto P₃, em r. Na figura, O₁ e O₂ são os centros das três primeiras semicircunferências traçadas e \(\frac{R}{2} \) e \(\frac{R}{4} \) seus respectivos raios.

A trajetória resultante do movimento da partícula será obtida repetindo-se esse comportamento indefinidamente, sendo o centro e o raio da n-ésima semicircunferência dados por \(O_n = \frac{R}{2^n} \), respectivamente, até o ponto Pₙ, também em r. Nessas condições, o comprimento da trajetória descrita pela partícula, em função do raio R, quando \(n \) tender ao infinito, será igual a

(a) \(2^{n-1} \cdot \pi \cdot R \) (d) \(\frac{7}{4} \cdot \pi \cdot R \)
(b) \(2^n \cdot \pi \cdot R \)
(c) \(2^{n-1} \cdot \pi \cdot R \) (e) \(2 \cdot \pi \cdot R \)

10. (2013/2) Um professor de geografia forneceu a seus alunos um mapa do estado de São Paulo, que informava que as distâncias aproximadas em linha reta entre os pontos que representam as cidades de São Paulo e Campinas e entre os pontos que representam as cidades de São Paulo e Guaratinguetá eram, respectivamente, 80 km e 160 km. Um dos alunos observou, então, que as distâncias em linha reta entre os pontos que representam as cidades de São Paulo, Campinas e Sorocaba formavam um triângulo equilátero. Já um outro aluno notou que as distâncias em linha reta entre os pontos que representam as cidades de São Paulo, Guaratinguetá e Campinas formavam um triângulo retângulo, conforme mostra o mapa.

Com essas informações, os alunos determinaram que a distância em linha reta entre os pontos que representam as cidades de Guaratinguetá e Sorocaba, em km, é próxima de

(a) \(80\sqrt{2} + 5\sqrt{3} \) (d) \(80\sqrt{5} + 3\sqrt{2} \)
(b) \(80\sqrt{5} + 2\sqrt{3} \)
(c) \(80\sqrt{6} \) (e) \(80\sqrt{7\sqrt{3}} \)

(a) conseguirá alcançar seu objetivo, realizando 13 saltos SJ e 7 QJ.

Professor: Leonardo Carvalho

UNESP

contato:spexatas@gmail.com
(b) conseguirá alcançar seu objetivo, realizando 7 saltos SJ e 13 QJ.

(c) conseguirá alcançar seu objetivo, realizando 13 saltos SJ.

(d) não conseguirá alcançar seu objetivo, pois não há número inteiro de saltos que lhe permita isso.

(e) conseguirá alcançar seu objetivo, realizando 7 saltos QJ.

12. (2014/1) Em ocasiões de concentração popular, frequentemente lemos ou escutamos informações desencontradas a respeito do número de participantes. Exemplo disso foram as informações divulgadas sobre a quantidade de manifestantes em um dos protestos na capital paulista, em junho passado. Enquanto a Polícia Militar apontava a participação de 30 mil pessoas, o Datafolha afirmava que havia, ao menos, 65 mil.

Tomando como base a foto, admita que:

(1) a extensão da rua plana e linear tomada pela população seja de 500 metros;

(2) o gráfico forneça o número médio de pessoas por metro quadrado nas diferentes sessões transversais da rua;

(3) a distribuição de pessoas por m² em cada sessão transversal da rua tenha sido uniforme em toda a extensão da manifestação.

Usando a aproximação \(\pi = 3 \), a medida, em cm, do arco externo do relógio determinado pelo ângulo central agudo formado pelos ponteiros das horas e dos minutos, no horário mostrado, vale aproximadamente

(a) 22.
(b) 31.
(c) 34.
(d) 29.
(e) 20.

14. (2015/1) Para divulgar a venda de um galpão retangular de 5000 m², uma imobiliária elaborou um anúncio em que constava a planta simplificada do galpão, em escala, conforme mostra a figura.

O maior lado do galpão mede, em metros,

(a) 200.
(b) 25.
(c) 50.
(d) 80.
(e) 100.

Professor: Leonardo Carvalho
UNESP
contato:spexatas@gmail.com
15. (2016/1) Renata pretende decorar parte de uma parede quadrada ABCD com dois tipos de papel de parede, um com linhas diagonais e outro com riscos horizontais. O projeto prevê que a parede seja dividida em um quadrado central, de lado x, e quatro retângulos laterais, conforme mostra a figura.

Se o total da área decorada com cada um dos dois tipos de papel é a mesma, então x, em metros, é igual a
(a) $1 + 2\sqrt{3}$
(b) $2 + 2\sqrt{3}$
(c) $2 + \sqrt{3}$
(d) $1 + \sqrt{3}$
(e) $4 + \sqrt{3}$
<table>
<thead>
<tr>
<th></th>
<th>Gabarito</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>D</td>
</tr>
<tr>
<td>(2)</td>
<td>E</td>
</tr>
<tr>
<td>(3)</td>
<td>E</td>
</tr>
<tr>
<td>(4)</td>
<td>D</td>
</tr>
<tr>
<td>(5)</td>
<td>B</td>
</tr>
<tr>
<td>(6)</td>
<td>D</td>
</tr>
<tr>
<td>(7)</td>
<td>E</td>
</tr>
<tr>
<td>(8)</td>
<td>A</td>
</tr>
<tr>
<td>(9)</td>
<td>E</td>
</tr>
<tr>
<td>(10)</td>
<td>B</td>
</tr>
<tr>
<td>(11)</td>
<td>D</td>
</tr>
<tr>
<td>(12)</td>
<td>A</td>
</tr>
<tr>
<td>(13)</td>
<td>B</td>
</tr>
<tr>
<td>(14)</td>
<td>E</td>
</tr>
<tr>
<td>(15)</td>
<td>B</td>
</tr>
</tbody>
</table>
Exercícios Objetivos

1. (2009/2) Uma rede de comunicação tem cinco antenas que transmitem uma para a outra, conforme mostrado na matriz

\[
A = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{bmatrix}
\]

Qual o significado do elemento \(b_{41} \) da matriz \(B = A^2 \)?

(a) Como \(b_{41} = 0 \), isso significa que a antena 4 não transmite para a antena 1.

(b) Como \(b_{41} = 1 \), isso significa que a antena 4 transmite para a antena 1.

(c) Como \(b_{41} = 3 \), isso significa que a antena 4 transmite para a antena 1.

(d) Como \(b_{41} = 3 \), isso significa que existem 3 maneiras diferentes de a antena 4 transmitir para a antena 1, usando apenas uma retransmissão entre elas.

(e) Como \(b_{41} = 3 \), isso não significa, pois \(b_{ij} \) só pode valer 0 ou 1, conforme definido no enunciado da questão.

2. (2012/1) Em um programa de plateia da TV brasileira, cinco participantes foram escolhidos pelo apresentador para tentarem acertar o número de bolas de gude contidas em uma urna de vidro transparente. Aquela que acertasse ou mais se aproximasse do número real de bolas de gude contidas na urna ganharia um prêmio. Os participantes A, B, C, D e E disseram haver, respectivamente, 1 195, 1 184, 1 177, 1 250 e 1 232 bolas na urna. Sabe-se que nenhum dos participantes acertou o número real de bolas, mas que um deles se enganou em 30 bolas, outro em 25, outro em 7, outro em 48 e, finalmente, outro em 18 bolas. Podemos concluir que quem ganhou o prêmio foi o participante:

(a) A. (d) D.

(b) B. (e) E.

(c) C.

3. (2012/2) Dada a matriz \(A = \begin{bmatrix} -2 & 3 \\ -1 & 2 \end{bmatrix} \) e definindo-se \(A^0 = I \), \(A^1 = A \) e \(A^k = A \cdot A \cdot A \cdot \ldots \cdot A \), com k fatores, onde I é uma matriz identidade de ordem 2, \(k \in \mathbb{N} \) e \(k \geq 2 \), a matriz \(A^15 \) será dada por:

(a) I. (d) \(A^3 \).

(b) A. (e) \(A^4 \).

(c) \(A^2 \).

4. (2014/1) Considere a equação matricial \(A + BX = X + 2C \), cuja incógnita é a matriz X e todas as matrices são quadradas de ordem \(n \). A condição necessária e suficiente para que esta equação tenha solução única é que:

(a) \(B - I \neq O \), onde I e a matriz identidade de ordem \(n \) e O e a matriz nula de ordem \(n \).

(b) B seja invertível.

(c) \(B \neq O \), onde O e a matriz nula de ordem \(n \).

(d) \(B - I \) seja invertível, onde I e a matriz identidade de ordem \(n \).

(e) A e C sejam invertíveis.
<table>
<thead>
<tr>
<th>Gabarito</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) D</td>
</tr>
<tr>
<td>(2) A</td>
</tr>
<tr>
<td>(3) B</td>
</tr>
<tr>
<td>(4) D</td>
</tr>
</tbody>
</table>
1. (2010/1) As soluções da equação \(z^3 = i \), onde \(z \) é um número complexo e \(i^2 = -1 \), são:

(a) \(z = \pm \frac{\sqrt{2}}{2} + \frac{1}{2}i \) ou \(z = -i \)

(b) \(z = \pm \frac{\sqrt{3}}{2} - \frac{1}{2}i \) ou \(z = -i \)

(c) \(z = \pm \frac{\sqrt{3}}{2} + \frac{1}{2}i \) ou \(z = -i \)

(d) \(z = \pm \frac{\sqrt{2}}{2} - \frac{1}{2}i \) ou \(z = -i \)

(e) \(z = \pm \frac{1}{2} - \frac{\sqrt{3}}{2}i \) ou \(z = -i \)
Gabarito

(1) C
Exercícios Objetivos

1. (2009/2) Dividindo o polinômio $P(x) = 5x^3 + 3x^2 + 2x - 4$ pelo polinômio $D(x)$, obtém-se o quociente $Q(x) = 5x + 18$ e o resto $R(x) = 51x - 22$. O valor de $D(2)$ é:

(a) -11.
(b) -3.
(c) -1.

(d) 3.
(e) 11.

2. (2009/2) Sabendo-se que $(1 + i)$ é raiz do polinômio $P(x) = x^3 - 3x^2 + 3x - 4 + 2$, pode-se afirmar que

(a) 1 é raiz de multiplicidade 1 de $P(x)$.
(b) 1 é raiz de multiplicidade 2 de $P(x)$.
(c) -1 é raiz de multiplicidade 2 de $P(x)$.
(d) $(1 + i)$ é raiz de multiplicidade 2 de $P(x)$.
(e) $(1 - i)$ não é raiz de $P(x)$.

3. (2012/1) Dado que as raízes da equação $x^3 - 3x^2 - x + k = 0$, onde k é uma constante real, formam uma progressão aritmética, o valor de k é:

(a) -5.
(b) -3.
(c) 0.

(d) 3.
(e) 5.

4. (2013/1) A equação polinomial $x^3 - 3x^2 + 4x - 2 = 0$ admite 1 como raiz. Suas duas outras raízes são

(a) $-1 - i$ e $(1 + i)$
(b) $(1 - i)^2$
(c) $(-i) + (i)$

(d) $-1 + i$ e $(1 - i)$
(e) $(-1 + i)$ e $(1 - i)$

5. (2014/1) Sabe-se que, na equação $x^2 + 4x^2 + x - 6 = 0$, uma das raízes é igual à soma das outras duas. O conjunto solução (S) desta equação é

(a) $S = \{-3, -2, -1\}$
(b) $S = \{-3, -2, +1\}$
(c) $S = \{+1, +2, +3\}$

(d) $S = \{-1, +2, +3\}$
(e) $S = \{-2, +1, +3\}$

6. (2014/2) O polinômio $P(x) = a \cdot x^3 + b \cdot x + 6$ é divisível por $x - 2$ e, quando dividível por $x + 3$, deixa resto -45. Nessas condições, os valores de a e b, respectivamente, são

(a) 1 e 4.
(b) 1 e 12.
(c) -1 e 12.

(d) 2 e 16.
(e) 1 e -12.

7. (2015/1) Sabe-se que 1 é uma raiz de multiplica- dade 3 da equação $x^3 - 3x^4 + 4x^3 - 4x^2 + 3x - 1 = 0$. As outras raízes dessa equação, no Conjunto Numérico dos Complexos, são

(a) $-1 - i$ e $(1 + i)$
(b) $(1 - i)^2$
(c) $(-i) + (i)$

(d) $-1 + i$ e $(1 - i)$
(e) $(1 - i)$ e $(1 + i)$
Gabarito

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7)</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exercícios Objetivos

1. (2009/1) A Amazônia Legal, com área de aproximadamente 5215000 km², compreende os estados do Acre, Amapá, Amazonas, Mato Grosso, Pará, Rondônia, Roraima e Tocantins, e parte do estado do Maranhão. Um sistema de monitoramento e controle mensal do desmatamento da Amazônia utilizado pelo INPE (Instituto Nacional de Pesquisas Espaciais) é o Deter (Detecção de Desmatamento em Tempo Real). O gráfico apresenta dados apontados pelo Deter referentes ao desmatamento na Amazônia Legal, por estado, no período de 1º de julho de 2007 a 30 de junho de 2008, totalizando 8848 km² de área desmatada.

![Gráfico de desmatamento na Amazônia Legal](http://www.obt.inpe.br/deter/ — valores aproximados)

Com base nos dados apresentados, podemos afirmar:

(a) o estado onde ocorreu a maior quantidade de km² desmatados foi o do Pará.
(b) a área total de desmatamento corresponde a menos de 0,1% da área da Amazônia Legal.
(c) somando-se a quantidade de áreas desmatadas nos estados de Roraima e Tocantins, obtemos um terço da quantidade de área desmatada em Rondônia.
(d) o estado do Mato Grosso foi responsável por mais de 50% do desmatamento total detectado nesse período.
(e) as quantidades de áreas desmatadas no Acre, Maranhão e Amazonas formam, nessa ordem, uma progressão geométrica.

2. (2009/1) Numa campanha de preservação do meio ambiente, uma prefeitura dá descontos na conta de água em troca de latas de alumínio e garrafas de plástico (PET) arrecadadas. Para um quilograma de alumínio, o desconto é de R$ 2,90 na conta de água; para um quilograma de plástico, o abatimento é de R$ 0,17. Uma família obteve R$ 16,20 de desconto na conta de água com a troca de alumínio e garrafas plásticas. Se a quantidade (em quilogramas) de plástico que a família entregou foi o dobro da quantidade de alumínio, a quantidade de plástico, em quilogramas, que essa família entregou na campanha foi:

(a) 5.
(b) 6.
(c) 8.
(d) 9.
(e) 10.

3. (2009/2) Suponha que um comerciante, não muito honesto, dono de um posto de gasolina, vende gasolina “batizada”. Ele paga à Petrobras R$ 1,75 o litro de gasolina e adiciona a cada 10 litros desta, 2 litros de solvete, pelos quais paga R$ 0,15 o litro. Nessas condições, o comerciante vende o litro da gasolina “batizada” por R$ 2,29 e tem um lucro de 35% em cada litro. Se a gasolina sofrer um reajuste de 10%, qual deverá ser o preço de venda, aproximadamente, para que o percentual de lucro seja mantido?

(a) R$ 2,48.
(b) R$ 2,49.
(c) R$ 2,51.
(d) R$ 2,52.
(e) R$ 2,53.

4. (2010/1) Desejo ter, para minha aposentadoria, 1 milhão de reais. Para isso, faço uma aplicação financeira, que rende 1% de juros ao mês, já descontados o imposto de renda e as taxas bancárias recorrentes. Se desejo me aposentar após 30 anos com aplicações mensais fixas e ininterruptas nesse investimento, o valor aproximado, em reais, que devo disponibilizar mensalmente é:

Dado: 1,01\(^{360}\) ≈ 36

(a) 290,00.
(b) 286,00.
(c) 282,00.
(d) 278,00.
(e) 274,00.

5. (2010/2) No Brasil, desde junho de 2008, se for constatada uma concentração de álcool no sangue acima de 0,6 g/l, o motorista é detido e processado criminalmente.

Professor: Leonardo Carvalho
UNESP
contato: spexatas@gmail.com
Determine o número máximo de latas de cerveja que um motorista pode ingerir, antes de dirigir, para não ser processado criminalmente caso seja submetido ao teste.

Dados:

- o volume médio de sangue no corpo de um homem adulto é 7,0 litros;
- uma lata de cerveja de 350 ml contém 16 ml de álcool;
- 14% do volume de álcool ingerido por um homem adulto vão para a corrente sanguínea;
- a densidade do álcool contido em cervejas é de 0,8 g/ml.

Observação: Os resultados de todas as operações devem ser aproximados por duas casas decimais.

(a) 1. (d) 4.
(b) 2. (e) 5.
(c) 3.

6. (2011/1) Os professores de matemática e educação física de uma escola organizaram um campeonato de damas entre os alunos. Pelas regras do campeonato, cada colocação admitia apenas um ocupante. Para premiar os três primeiros colocados, a direção da escola comprou 310 chocolates, que foram divididos entre os 1º, 2º e 3º colocados no campeonato, em quantidades inversamente proporcionais aos números 2, 3 e 5, respectivamente. As quantidades de chocolates recebidas pelos alunos premiados, em ordem crescente de colocação no campeonato, foram:

(a) 155, 93 e 62. (d) 150, 103 e 57.
(b) 155, 95 e 60. (c) 150, 100 e 60.
(e) 150, 105 e 55.

7. (2011/1) O gráfico representa a distribuição percentual do Produto Interno Bruto (PIB) do Brasil por faixas de renda da população, também em porcentagem.

Baseado no gráfico, pode-se concluir que os 20% mais pobres da população brasileira detêm 3,5% (1%+2,5%) da renda nacional. Suponho a população brasileira igual a 200 milhões de habitantes e o PIB brasileiro igual a 2,4 trilhões de reais (Fonte: IBGE), a renda per capita dos 20% mais ricos da população brasileira, em reais, é de

(a) 2.100,00. (d) 37.800,00.
(b) 15.600,00. (c) 19.800,00. (e) 48.000,00.

8. (2011/1) Uma família fez uma pesquisa de mercado, nas lojas de eletrôdomésticos, à procura de três produtos que desejava adquirir: uma TV, um freezer e uma churrasqueira. Em três das lojas pesquisadas, os preços de cada um dos produtos eram coincidentes entre si, mas nenhuma das lojas tinha os três produtos simultaneamente para a venda. A loja A vendia a churrasqueira e o freezer por R$ 1.288,00. A loja B vendia a TV e o freezer por R$ 3.698,00 e a loja C vendia a churrasqueira e a TV por R$ 2.588,00. A família acabou comprando a TV, o freezer e a churrasqueira nestas três lojas. O valor total pago, em reais, pelos três produtos foi de

(a) 3.767,00. (d) 3.797,00.
(b) 3.777,00. (c) 3.787,00. (e) 3.807,00.

Observando as informações, numéricas e coloridas, contidas na tabela, analise as afirmações:

(I) O custo do aluguel em Luanda é o mais alto do mundo.

(II) O custo do cafozinho em Tóquio é o mais alto do mundo.

(III) O custo do jornal importado em São Paulo é o mais alto do mundo.

(IV) O custo do lanche em Libreville é o mais alto do mundo.

(V) O custo da gasolina em Tóquio é o mais alto do mundo.

Estão corretas as afirmações:

(a) I, III e V, apenas.
(b) II e IV, apenas.
(c) I, II e III, apenas.
(d) III, IV e V, apenas.
(e) I, II, III, IV e V.

10. (2012/1) Um quilo gram de tomates é constituído por 80% de água. Essa massa de tomate (polpa + H₂O) é submetida a um processo de desidratação, no qual apenas a água é retirada, até que a participação da água na massa de tomate se reduza a 20%. Após o processo de desidratação, a massa de tomate, em gramas, será de:

(a) 200.
(b) 225.
(c) 250.
(d) 275.
(e) 300.

11. (2012/1) O gráfico representa a vazão resultante de água, em m³/h, em um tanque, em função do tempo, em horas. Vazões negativas significam que o volume de água no tanque está diminuindo.

São feitas as seguintes afirmações:

(I) No intervalo de A até B, o volume de água no tanque é constante.

(II) No intervalo de B até E, o volume de água no tanque está crescendo.

(III) No intervalo de E até H, o volume de água no tanque está decrescendo.

(IV) No intervalo de C até D, o volume de água no tanque está crescendo mais rapidamente.

(V) No intervalo de F até G, o volume de água no tanque está decrescendo mais rapidamente.

É correto o que se afirma em:

(a) I, III e V, apenas.
(b) II e IV, apenas.
(c) I, II e III, apenas.
(d) III, IV e V, apenas.
(e) I, II, III, IV e V.

12. (2012/2) O mercado automotivo na América Latina crescerá, no máximo, 2% em 2012. A estimativa é que, após esse período, ele voltará a expandir-se mais rapidamente, o que permitirá um crescimento médio de 5% nos próximos cinco anos.

A afirmação foi feita pelo presidente da GM na América do Sul. Suas estimativas para as vendas, especificamente da GM na América Latina, são de 1,1 milhão de unidades em 2012 e de chegar a 1,4 milhão de veículos por ano até 2015.
A estimativa de que as vendas da GM, na América Latina, chegarão a 1,4 milhão de unidades no ano de 2015 pode ser considerada
(a) otimista, pois para isto a taxa média de crescimento anual das vendas para o período deveria ser maior que 5%.
(b) tímida, pois para isto a taxa média de crescimento anual das vendas para o período deveria ser menor que 5%.
(c) correta, pois para isto a taxa média de crescimento anual das vendas para o período deveria ser igual a 5%.
(d) realista, pois para isto a taxa média de crescimento anual das vendas para o período deveria ser menor ou igual a 5%.
(e) não matematicamente verificável, pois não são fornecidos dados suficientes para isto.

13. (2013/1) O gráfico informa o percentual de variação do PIB brasileiro, em três setores produtivos, quando comparado com o mesmo trimestre do ano anterior, em um período de sete trimestres.

Comparando-se os dados do gráfico, verifica-se que, no 3º trimestre de 2011 (2011/III), quando comparado ao 3º trimestre de 2010 (2010/III), o PIB dos setores de agropecuária, indústria e serviços, respectivamente,
(a) caiu 3,4%, 5,8% e 1,1%.
(b) avançou 7,9%, 8,3% e 4,9%.
(c) avançou 6,9% e caiu 0,7% e 1,4%.

(d) caiu 0,1%, 7,3% e 2,9%.
(e) avançou 6,9%, 1,0% e 2,0%.

14. (2013/1) As medições da elevação do nível dos mares e oceanos feitas por mareógrafos ao longo da costa, no período de 1880 a 2000, mostram que o nível global destes subiu a uma taxa média de 1,7 cm por década. Já as medições realizadas por altímetros-radares a bordo de satélites de sensoriamento remoto, para o período de 1990 a 2000, indicam que o nível subiu a uma taxa média de 3,1 cm por década.
Admitindo que as condições climáticas que provocam esta elevação não se alterem nos próximos 50 anos, o nível global dos mares e oceanos deverá subir nesse período, em cm, entre
(a) 8,5 e 15,5.
(b) 6,5 e 13,5.
(c) 7,5 e 10,5.
(e) 5,5 e 15,5.

15. (2014/1) Semanalmente, o apresentador de um programa televisivo reparte uma mesma quantia em dinheiro igualmente entre os vencedores de um concurso. Na semana passada, cada um dos 15 vencedores recebeu R$ 720,00. Nesta semana, houve 24 vencedores; portanto, a quantia recebida por cada um deles, em reais, foi de
(a) 675,00.
(b) 600,00.
(c) 450,00.
(e) 400,00.

(2014/2) Considere os dados aproximados, obtidos em 2010, do Censo realizado pelo IBGE.
A partir das informações, é correto afirmar que o número aproximado de mulheres com 18 anos ou mais, em milhões, era

(a) 70.
(b) 52.
(c) 55.
(d) 59.
(e) 65.

17. (2015/1) Analise as informações da tabela, que apresentam estimativas sobre três setores da economia brasileira.

<table>
<thead>
<tr>
<th>ano</th>
<th>arrecadação total de tributos (em trilhões)</th>
<th>PIB (em trilhões)</th>
<th>inflação (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>1,70</td>
<td>4,92</td>
<td>6,46</td>
</tr>
<tr>
<td>2015</td>
<td>1,78</td>
<td>5,02</td>
<td>6,10</td>
</tr>
<tr>
<td>2016</td>
<td>1,86</td>
<td>5,25</td>
<td>4,60</td>
</tr>
</tbody>
</table>

Se as previsões econômicas para esse período estiverem corretas e admitindo que os salários são corrigidos anualmente pelo índice de inflação, no geral, o cidadão brasileiro terá seu salário cada vez — corrido pela inflação; pagará cada vez — tributos; e produzirá cada ano — para o crescimento do país.

Assinale a alternativa que preenche, correta e respectivamente, as lacunas do texto.

(a) menos - menos - mais.
(b) menos - mais - mais.
(c) mais - mais - mais.
(d) menos - mais - menos.
(e) menos - menos - menos.

18. (2016/1) A taxa de analfabetismo representa a porcentagem da população com idade de 15 anos ou mais que é considerada analfabeta. A tabela indica alguns dados estatísticos referentes a um município.

<table>
<thead>
<tr>
<th>Taxa de analfabetismo</th>
<th>População com menos de 15 anos</th>
<th>População com 15 anos ou mais</th>
</tr>
</thead>
<tbody>
<tr>
<td>6%</td>
<td>2000</td>
<td>8000</td>
</tr>
</tbody>
</table>

Do total de pessoas desse município com menos de 15 anos de idade, 250 podem ser consideradas alfabetizadas. Com base nas informações apresentadas, é correto afirmar que, da população total desse município, são alfabetizados

(a) 76,1%.
(b) 66,5%.
(c) 94,5%.
(d) 89,0%.
(e) 71,1%.
Gabarito

(1) D (5) B (9) D (13) E (17) B
(2) E (6) C (10) C (14) A (18) A
(3) C (7) D (11) E (15) C
(4) B (8) C (12) A (16) A

Professor: Leonardo Carvalho
UNESP
contato:spexatas@gmail.com
Exercícios Objetivos

1. (2009/1) Um viveiro clandestino com quase trezentos pássaros foi encontrado por autoridades ambientais. Pretende-se soltar esses pássaros seguindo um cronograma, de acordo com uma progressão aritmética, de modo que no primeiro dia sejam soltos cinco pássaros, no segundo dia sete pássaros, no terceiro nove, e assim por diante. Quantos pássaros serão soltos no décimo quinto dia?

(a) 55. (d) 32.
(b) 43. (e) 30.
(c) 33.

2. (2011/1) Após o nascimento do filho, o pai comprometeu-se a depositar mensalmente, em uma caderneta de poupança, os valores de R$ 1,00, R$ 2,00, R$ 4,00 e assim sucessivamente, até o mês em que o valor do depósito atingisse R$ 2.048,00. No mês seguinte o pai recomeçaria os depósitos como de início e assim o faria até o 21º aniversário do filho. Não tendo ocorrido falha de depósito ao longo do período, e sabendo-se que 2^10 = 1.024, o montante total dos depósitos, em reais, feitos em caderneta de poupança foi de

(a) 42.947,50. (d) 85.995,00.
(b) 49.142,00. (e) 114.660,00.
(c) 57.330,00.

3. (2012/2) O artigo Uma estrada, muitas florestas relata parte do trabalho de reforestamento necessário após a construção do trecho sul do Rodoanel da cidade de São Paulo. O engenheiro agrônomo Maycon de Oliveira mostra uma das árvores, um fumo-bravo, que ele e sua equipe plantaram em novembro de 2009. Nesse tempo, a árvore cresceu – está com quase 2,5 metros –, floresceu, frutificou e lançou sementes que germinaram e formaram descendentes [...] perto da árvore principal. O fumo-bravo [...] é uma espécie de árvore pioneira, que cresce rapidamente, fazendo sombra para as espécies de árvores de crescimento mais lento, mas de vida mais longa.

(Pesquisa FAPESP, janeiro de 2012. Adaptado.)

Considerando que a referida árvore foi plantada em 1º de novembro de 2009 com uma altura de 1 dm e que em 31 de outubro de 2011 sua altura era de 2,5 m e admitindo ainda que suas alturas, ao final de cada ano de plantio, nesta fase de crescimento, formem uma progressão geométrica, a razão deste crescimento, no período de dois anos, foi de

(a) 0,5. (d) 5 \times 10^{1/2}.
(b) 5 \times 10^{-1/2}. (e) 50.
(c) 5.

4. (2013/1) A soma dos n primeiros termos de uma progressão aritmética é dada por 3n^2 – 2n, onde n é um número natural. Para essa progressão, o primeiro termo e a razão são, respectivamente,

(a) 7 e 1. (d) 1 e 7.
(b) 1 e 6. (e) 6 e 7.
(c) 6 e 1.

5. (2016/1) A figura indica o padrão de uma sequência de grades, feitas com vigas idênticas, que estão dispostas em posição horizontal e vertical. Cada viga tem 0,5 m de comprimento. O padrão da sequência se mantém até a última grade, que é feita com o total de 136,5 metros lineares de vigas.

Professor: Leonardo Carvalho
UNESP
 contato: spexetas@gmail.com
O comprimento do total de vigas necessárias para fazer a sequência completa de grades, em metros, foi de

(a) 4877.
(b) 4640.
(c) 4726.
(d) 5195.
(e) 5162.
Gabarito

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>C</td>
<td>(2)</td>
<td>D</td>
<td>(3)</td>
</tr>
<tr>
<td>(4)</td>
<td>B</td>
<td>(5)</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>
ExercíciosObjetivos

1. (2009/2) Seja n um número natural de 3 algarismos. Se, ao multiplicar-se n por 7 obtém-se um número terminado em 373, é correto afirmar que

 (a) n é par.
 (b) o produto dos algarismos de n é par.
 (c) a soma dos algarismos de n é divisível por 2.
 (d) n é divisível por 3.
 (e) o produto dos algarismos de n é primo.

2. (2013/2) A soma de quatro números é 100. Três deles são primos e um dos quatro é a soma dos outros três. O número de soluções existentes para este problema é

 (a) 3.
 (b) 4.
 (c) 2.
 (d) 5.
 (e) 6.
Gabarito

(1) D (2) D
Exercícios Objetivos

1. (2009/2) Determinando m, de modo que as raízes da equação \(x^2 - mx + m + m^2 = 0 \) sejam o seno e o co-seno do mesmo ângulo, os possíveis valores desse ângulo no 1º ciclo trigonométrico são:

(a) 0º ou \(\pi \).
(b) \(3\pi/2 \) ou \(2\pi \).
(c) \(\pi \) ou \(2\pi \).
(d) \(\pi/2 \) ou \(3\pi/2 \).

2. (2009/2) Uma das maneiras de se calcular o raio da Terra, considerando-a como uma esfera, é escalar o topo de uma montanha cuja altitude acima do nível do mar seja conhecida e medir o ângulo entre a vertical e a linha do horizonte. Sabendo-se que a altitude do topo do Pico das Agulhas Negras, em Itaiaia/RJ, é de 2 791 metros em relação ao nível do mar, e que este ponto ao ponto, no horizonte, sobre o Oceano Atlântico, faz um ângulo de 43,6º com a vertical, o raio estimado da Terra, em quilômetros, é:

Use: \(\sin(43,6\degree) = 0,69 \)

3. (2010/2) Em situação normal, observa-se que os sucessivos períodos de aspiração e expiração de ar dos pulmões em um indivíduo são iguais em tempo, bem como na quantidade de ar inalado e expelida.

A velocidade de aspiração e expiração de ar dos pulmões de um indivíduo está representada pela curva do gráfico, considerando apenas um ciclo do processo.

Sabendo-se que, em uma pessoa em estado de repouso, um ciclo de aspiração e expiração completo ocorre a cada 5 segundos e que a taxa máxima de inalação e exalação, em módulo, é 0,6 l/s, a expressão da função cujo gráfico mais se aproxima da curva representada na figura é:

(a) \(V(t) = \frac{2\pi}{5} \sin \frac{3t}{5} \).
(b) \(V(t) = \frac{3}{5} \sin \frac{5t}{2\pi} \).
(c) \(V(t) = 0,6 \cos \frac{2\pi t}{5} \).
(d) \(V(t) = 0,6 \sin \frac{2\pi t}{5} \).
(e) \(V(t) = \frac{5}{2\pi} \cos 0,6t \).

4. (2013/2) A caçamba de um caminhão basculante tem 3 m de comprimento das direções de seu ponto mais frontal P até a de seu eixo de rotação e 1 m de altura entre os pontos P e Q. Quando na posição horizontal, isto é, quando os segmentos de retas r e s se coincidirem, a base do fundo da caçamba distará 1,2 m do solo. Ela pode girar, no máximo, \(\alpha \) graus em torno de seu eixo de rotação, localizado em sua parte traseira inferior, conforme indicado na figura.
Dado \(\cos \alpha = 0,8 \), a altura, em metros, atingida pelo ponto \(P \), em relação ao solo, quando o ângulo de giro \(\alpha \) for máximo, é

(a) 4,8.
(b) 5,0.
(c) 3,8.
(d) 4,4.
(e) 4,0.

5. (2014/1) O conjunto solução \((S) \) para a inequação \(2 \cdot \cos^2x + \cos(2x) > 2 \), em que \(0 < x < \pi \), é dado por:

(a) \(S = \{x \in (0, \pi) \mid 0 < x < \frac{\pi}{6} ou \frac{5\pi}{6} < x < \pi \} \)

(b) \(S = \{x \in (0, \pi) \mid \frac{\pi}{3} < x < \frac{2\pi}{3} \} \)

(c) \(S = \{x \in (0, \pi) \mid 0 < x < \frac{\pi}{3} ou \frac{2\pi}{3} < x < \pi \} \)

(d) \(S = \{x \in (0, \pi) \mid \frac{\pi}{6} < x < \frac{5\pi}{6} \} \)

(e) \(S = \{x \in (0, \pi) \} \)

6. (2015/1) A figura representa a vista superior do tampo plano e horizontal de uma mesa de bilhar retangular \(ABCD \), com caçapas em \(A \), \(B \), \(C \) e \(D \). O ponto \(P \), localizado em \(AB \), representa a posição de uma bola de bilhar, sendo \(PB = 1,5m \) e \(PA = 1,2m \). Após uma tacada na bola, ela se desloca em linha reta colidindo com \(BC \) no ponto \(T \), sendo a medida do ângulo \(PTB \) igual a \(60^\circ \). Após essa colisão, a bola segue, em trajetória reta, diretamente até a caçapa \(D \).

Nas condições descritas e adotando \(\sqrt{3} = 1,73 \), a largura do tampo da mesa, em metros, é próxima de

(a) 2,42.
(b) 2,08.
(c) 2,28.
(d) 2,00.
(e) 2,56.
Gabarito

1) E
2) D
3) D
4) C
5) A
6) A